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ABSTRACT

A formula for the impedance of a short, cylindrical dipole in a

magneto plasm_ is derived using quasi-static electromagnetic theory. The

formula is valid in a lossy plasma and for any dipole orientation with

respect to the magnetic field° It is shown that the quasi-statlc theory

can be interpreted in terms of scaled coordinates and that a cylindrical

dipole in a magnetoplasma, has a free space equivalent with a distorted

shape° The dipole impedance is found to have a positive real part under

lossless conditions when the quasi-static differential equation is hyper-

bolic; this indicates that the wuasi-static theory predicts a form of

radiation, The effects of plasma wave excitation and various assumed

Current distributions are discussed. Laboratory measurements of monopole

impedance are _ound to agree fairly well with the theoretical calculations.
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io INTRODUCTION

When an antenna is immersed in some medium, knowledge of its impedance

is important whether the antenna is regarded as part of a communications

system or as a probe for studying the properties of the medium. For the

former application, energy reflection from the antenna must be minimized

and for the latter, the relationship between impedance and medium properties

must be well established° The foregoing statements apply especially to

rocket and satellite exploration of the ionosphere and also to plasma

diagnostics in the laboratory_ For these reasons it was decided to study

both theoretically and experimentally the impedance of a short cylindrical

dipole antenna immersed in a :.magnetoplasmao Only linear (low RF level)

phenomena will be discussed in this report°

The analysis is limited to short antennas (short compared to a wave-

length) in order to avoid the problem of obtaining theoretically the antenna

current distributions° If the antenna is short enough, the current may

be assumed to vary linearly from a maximum at the center to zero at both

ends° Furthermore a short antenna may be conveniently analyzed using

quasi-static electromagnetic theory, a method which (in free space at

least) gives good impedance results but does not predict radiation. In

this report the quasi-static theory is derived by means of a low fre-

quency approximation and is used to calculate dipole impedance for any

orientation of the dipole with respect to the steady magnetic field.

Furthermore it is shown that the first near field term of Mittra and

I
Deschamps is the quasi-static field_
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Labo:_ato.c_impedancemeasurementsalso are simplified by limiting

the experimen_ation 'to sho_t antennas° Since a short: antenna radiates

little ene_vgy_ the reflection of this energy from nearby obstacles has

negligible effect on the impedance o This is especially important when

the antenna is immersed in a laboratory plasma because the walls of the

plasma container must; necessar'ily be. close to the antennao The measure-

ments to be described were pe:rformed on a monopole antenna having a l_ngth

of app:roxima*:e].y a tweniieth of a :free space wavelength and inserted in

the end of a cylindrical glass discharge tube° For' experimental conven _

ience, measurements az_e limi.ted to the. case in which the e%e_dy magnetic

field is parallel, to the monopole aXlS o The impedance measurements agree

reasonably well. with the quasi=sta?:ia iheoretical predictions°

An unexpected resu]t of the quas:t_sta%ic theory is the prediction of

radiation which occurs _hen the quasl..-s+:a?;ic dlffe_'ential equation is

hyperbo]Ic_ The e:ffec?, of thi_ radiation on impedance is not only pre _

dieted theoretically but also detected experimentally° Electromagnetlc

effects such as radi.atl.on _ere not: expected because, in free space; a

quasi-static (i:.r':_'ot:atlonal) electllc field cannot induce a magnetic field°

In a magne%opl_ma:, however_ the electrl.c field does induce a magnetic

field and radiation can take place°

The validity of the theoretical model is examined from several view_

po]nts o An impedance correetlon is computed_ using a second order term

arislng in the de:.tlvation of the quas_-static field _heoryo The problem

of the influence of the assumed current distribution is treated by com-

puting the. effects of two diffe:tent eur._ent distributions° :In addltion_
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the effect of the excitation of longitudinal plasma waves is computed

for the isotropic case° However_ as far as the laboratory experiment is

concerned these corrections are of negligible importance compared to the

problem of non-uniform electron density resulting from plasma diffusion

to the antenna surface and to the container walls. The magnitude of

this effect is estimated by calculating the impedance of a non-uniform_

isotropic plasma between parallel conducting plates.

There are relatively few published papers dealing with the impedance

of antennas in anisotropic media. Kononov et al_ have applied quasi-

static theory to the problem of an infinitesimal dipole but their field

and impedance expressions differ with those in this report due to their

choice of an integration contour° Katzin and Katzin $ have derived an

impedance formula for longer dipoles but a great deal of num_=_cal inte-

gration would be necessary to extract impedance values from their formula°

Whale 4 has discussed some aspects of the problem_ including the effect of

plasma wave excitation on radiation resistance° Bramley 5 has obtained an

impedance expression valid for low electron density or weak magnetic field.

Kaiser 6 has observed a real part in the input impedance of a biconlcal

dipole but he believes this to be the result of energy storage rather than

radiation°

Some papers on related topics should be mentioned for the sake of

completeness° The impedance of antennas in conducting, isotropic media

has been studied by King and Harrison 7 and also by Deschamps 8 whose

impedance relation is particularly simple anduseful0 Quasi-static theory

has been applied to propagation problems in plasmas by Trivelpiece and

11_

Gould 9 and in ferrites by Trivelpiece et al, 10 and several other authors.
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A thorough discussion of source problems in ie_t_opie; warm plasma has

been presented by Cghen I$ in a series of +_hree articles o



2_ THEQUASI=STATICTHEORYFORA SHORTDIPOLEANTENNA
IN A MAGNETOPLASMA

2ol

are

Derivation of the Basic Equations

In a plasma with a z- directed DC magnetic field_ Maxwell's equations

V X H = j 0_ eoKE + _ (2olol)

V X E = =j _ Do H (2olo2)

The relative permittivity tensor K is

I K _ _ 1

jg 0

K = -jK K 0 (2olo3)

0 0 K
O

in which x
K = 1 ==
o U

4

K _' = 1

_72 _2

_X Y
K -

_ __2



2

X_

J

_o
H

¢o

N 2

2 e

o

eB

H m

U = 1-jZ =: 1-j
v =: collision frequency

N =: electron denszty

B = DC magnetic flux density
o

= angular frequency of signal, source

e = magnitude of elect:con charge

m = electron mass

E = permi, ttivity of free space = (36ff x 109) -: fdo/m_,
o

Do = permeability of free space :: 4ff x 1,0_ hyo/mo

i

ko=: _0 ._o 6o _-':-c: ---k :: free space propagation constant
o

c =: velocity o:f 1,igh_: in a vacuum

k = free space _avelength
o

MoK_,So unl, rS (ratlonalized) are used throughout o

Tbe impedance analysls of an antenna requires knowledge of its near

field,, If all the dimensions of the antenna are small compared to a

wavelength_ the use of an approximate near field theory is indicated in

order to simplify the otherwise complicated calculations° Such an

approximate theory can be obtalned by first formulating general near

field expressions and then lett:ing %he antenna dimensions become very

small i.n terms of wavelengths,, An equivalent process involves le%ting the



frequency become arbitrarily small while maintaining the antenna size

and the properties of the medium constant (i°e0, the dispersive nature

of the medium is not considered)° This low frequency limit is employed

in the following paragraphs to derive quasl-statlc expressions for the

electric field, the magnetic field and Poyntlng's theorem°

The first step is to obtain a general field formulation valid for

electromagnetic problems in a :magne_oplasma.o It is desired to derive

and H from a pai r of potentials chosen in such a manner as to display

the quasl-static electric field as a distinct part of the total electric

field. The total electric field can be expressed in terms of a scalar

potential _ and a vector potential _0

(2.1.4)

Substitution of Equation (2.1o4) in Equation (2olo2) gives

m m

_o H = V X A (2.1o5)

The above two relations, together with EuA_oD (2.1.1) give

V+_ V X_ - k 2o KA =-j ¢o _o eo KV_ + P'o _ (2 1o6)



Operation on Equation (2olo6) with the divergence operator' gives

v.5

j_
o

(20107)

This equation can be simplified by introducing the followlng restriction

onA :

m

V,K A = 0 (2oio8)

This is a modification of the Coulomb gauge condition and is discussed in

the Appendix° Equation (2olo7) becomes

v._
V. KV_ = j_ (2oio9)

o

This differential equation can be used to obtain the potential _ due to a

current density 7o If q is the charge density_ the equation of contlnu±_y

67°'7 + j _ q = O) puts Equation (2olo9) into the form

q (2oioZO)
o

which may be regarded as a modified Poisson's equation° A complete

solution for all the fields would involve solving Equation (2o109) or

Equation (2olo10) for 4, substituting _ in Equation (2olo6) and solving

* Equation (2o1.1,0) is widely used and is the quasi-statlc differential

equation for the scalar potentlal 4o



for 7. Expressions for E and H could then be derived using Equations

(2.1o4) and (2olo5).

Sblution of the above equations can be facilitated by the use of

spatial Fourier transforms. A transform will be indicated with a wavy

line ( - 9 and the transform variables will be represented by the vector

k. Transformation of Equation (2ol.6) gives

n

M A = _o _o eo K k _ + _'o J (2.1.11)

where

-M = _X_g + k 2 K.
o

Transformation of Equation (2.1o9)'gives

i _ ° J
= - _--- _ _ (2.1.12)

o k ° Kk

Substitution of Equation (2.1.12) in Equation (20l_iI) gives

= -, ..... , + J (2. i. 13)
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The electric field E can be expressed in terms of the potentials

and consequently in terms of the current density J by transforming

Equation (2olo4):

( -)_ = - j _ _ + (_ _ (2olo14)

Similarly, transformation of Equation (201o5) gives an expression for

the magnetic field:

= j -

_o

(2olol5)

Thus the electrzc and magnetic fields can be expressed in terms of a

scalar potential and a vector potential, which can be derived from the

source current in a straightforward manner° The gauge condition on the

potentials i.s chosen so that the scalar' potential _ satisfies the relatively

simple quasi-static differential equation°

An examination of the equations in the preceding paragraph suggests

that some simplification may result if E and J are each separated into

two parts as follows_

E= E + E
o I

J= J + J
o 1

(2° l o16)
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in which

E =-jk@
o

E == - j ¢o A
1

--- Kkk o J
J =

o

"_ = Kk k . J
j = J - (2.1.17)
1

The following relations may be deduced readily:

_XK- 1 --_J = 0 (2.1.18)
o

J = 0 (2.1.19)
1

J is clearly a tronsverse vector. However it is not the entire transverse
I

part of the current density since the other part J is not longitudinal;
o

rather, K-1 _ is longitudinal. Equation (2.1o13) for the vector potentiai
o

becomes

= M-l _ (2.1.20)
A = _o 1
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Equations (2o1020)_ (2olo14) and (2olo12) permit the two parts of E to

be expressed as

0 O
0

E = - j c0 _o M-_ (2olo22)

Equation (2olo18) shows that E is a longitudinal vector° However it,is
0

not the entire 1.ong£tudinal part of E since in general _ o E ¢Oo Rather

K E is transverse_ a fact which may be deduced from the gauge condition°
1

An expression for the magnetic field follows from Equations (2olo20) and

(2olo15)_ It is

= J _x M-" _ (2o1023)
1

Another expression for' H may be derived by noting that

,_M'k = kXkNk + k 2 K
0

from which Lk = k 2 M-1 K k (2olo24)
0

Substitution of Equation (2ol,,24) in Equation (2o1,,13) gives
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_i m m

A =.___i _k k ° J + p.o M 1 j
o-_2E k ' Z_

0

(2.1.25)

from which

_= J_XM -I (2..1 o.26)

A comparison of Equation (2.1o26) with Equation (2.1.23) leads to the

conclusion that

_XM-I_ = 0 (2.1.27)
0

The decomposition of the current density into two parts ( a procedure

suggested by Professor Go Ao Deschamps) evidently simplifies the equations

considerably. Furthermore it is clear that E is derived entirely from
O

and that both E and H are derived entirely from _ . Similarly _ and
o 1 1

are derived from _ and _ respectively. Thus the entire field pro-
o 1

blem has been divided into two distinct halves, one with _,,_ source _v
O

and the other with the source _ . Although _ may be confined to a finite
1

region in space, J and J both exist outside that region.
o !

The theory developed above does not use any approximations and is

valid as long as the constant permittivity tensor K is a valid representa-

tion for the properties of the medium° Huwever, the near field analysis

of a short antenna can be simplified greatly by the use of a low frequency

approximation to the general theory. Since k is a parameter proportional
O
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to frequency_ the low frequency approximation can be effected by letting

k approach zero° As discussed before, the low frequency approximation
o

is not applied to the elements of the permittivity tensor K_ that is,

the elements of K are to be considered fixed as k approaches zero° It
o

will be shown that the first term of the approximation gives an electric

field equal, to E (the quasl-statlc electric field)° Furthermore it will
o

be shown that the low frequency approximation gives a magnetic field

consisting of two parts o One part is the familiar magnetic field obtain-

able from the DC form of Ampere's law and the other' part is an induced

magnetic field which is non-zero only in an anisotropic medium°

The low frequency approximation (the limit as k 2 approaches zero)
o

can now be applied to the vector potential, Ao Equation (2olo25) shows

that A can be expressed as follows_

kk o J

A =: + _o M-_ J

o

::-: .... + k
k o

o

(2olo28)

If the rectangular components of k are kl_ k 2_ k3, then the matrix M is
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S

t" tt

k2+ k - k2 K _ -k k - jk2° K
2 3 o I 2

_t 2 Y

-k k + Jko2K k2+ k2- k KI 2 1 3 _ o,,_

-k k -k k
13 23

k2+ k2-k 2 K
I 2 o o

(2ol.29)

The inverse of M can be expressed as _I N
D

4
N +k 2 N +k N
o o _ o 2 (2.1.30)

in which D is the determinant of Mo In order to consider the low frequency

limit; it is necessary to know the scalars 8_ b; c and the matrices

No, NI, N o They are2

a = -(k21 + k22 + k2) [Kt3 (k21 + k22) + Ko k2]3

= _ _-2 _ . K _ (2.1.31) '



16

b = (K _2= K 2) (k 2 + k 2) + K K (k 2 ÷ + 2 k 2) (2olo32)

c=K
o

(K 2

= - det K

N = (k 2 -_ k_ + k_)
o 1 :_ '

k 2 kk kk
1 1 2 1

kk k2 kk
12 2 2 _

k k kk k2
I _ 2 _ 3

(2oio33)

K" (k 2+k 2)+K (k 2+k 2)
1 2 o 1 3

K k k + JK (k2+ k 2)
o 1 2 1 2

K k k +JK k k
1 3 2

K k k -JK (k2+k 2)
o 1 2 1 2

K' (k2+k 2 )+K (k2+k 2)
1 2 o 2 $

Kkk=jKkk
23 i _

K k k -JK k k
13 23

K k k3@JK k k2 _ 3

K (k 2+k 2+ 2k25)1 2

(2° 1.34)
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N= K
2 o

m

z

K

t!

jK

0 0

|!

-jE

T

E

0

0

'2 IK, 2K
K

o

(2.1.35)

The vector potential expresszon, Equation (2°1.28)j now can be written as

o+ k2 "
A 2' a o

k
o

(2.1.36)

L I
N

-(b+k 2c) _ + N + k2 N
o a 1 o J

= _0 k 2 k4 ca+ b+
o o

(2. i. 37)

In the limit as k approaches zero, Equation (2.1.37) becomes
o

!

~ IJLol b N

Xo= -- [ N - ..oa I a

J (2. i. 38)

m

It should be noted that the above expression for A
o

parameter k .
o

is independent of the
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Low frequency expressions for E and H now can be derived using

Equation (2olo38)o

E=E + E
o I

= - j (k_+_A)
o

= _ a a J (2olo39)
o

If k 2
o

3ol) o

is sufficiently small, the second term can be neglected (see Section

Under such conditlons

= -j N J
o

E_
a

o

= E
o

(2olo40)

Equation (2olo40) asserts that the predominant low frequency electric

field can be derived entirely from the scalar potential _c, Thus E
o

is the

well-known quasi-static electric field° The preceding derivation not only
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displays the quasi-statlc electric field as a low frequency limit but also

provides a first order correction term (the second term in Equation (2.1o39))0

It will now be shown that the two terms of Equation (2olo39) are identi-

cal to the two near field terms which can be derived by the method of Mittra

1
and Deschamps° In their work_ Mit_ra and Deschamps derive an expression for

one electric field component by going through two long dlvisions_ the

following electric field derivation makes use of this approach° In the

notation of this report, the transformed electric field may be expressed

as,

= - j _ _o_-_ (2oi.41)

-J k2 M-_ "_
COE 0

0

FN + k2 N _-j i o o _ + k4o N2 --

The first long division gives

E=_EJ _ + k 2 1
O

O

_a + k2

a+k 2 b+ k 4
0 0

(2ol.43)
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The second long division gives

= -j
E-

_6
o

(2o io 44)

.oN k 2 BN _ bN + (b2-c) _-+ c - -_.
--- o + o__o_ _ + k4 I . j

a a 1 o k 2 k 4a+ b+ c
o o

The first two terms of Equation (2olo44) are interpreted by Mittra and

Deschamps as near field terms because they are singular at the origin°

Note that Equation (2olo39) is identical to the first two terms of Equation

(20 io 44)o

The transformed magnetic field was given by Equation (2olo23)_ it is

= J kXM -1 "J (2olo45)
I

Equation (2_1o30) shows that thls can be expressed as

= IN +k2 N +k4 N 1 ~

o o I o _ _ (2o1046)

H = j kX k 2 (a+ k 2 b + k4c) 1
o o o

However,

o 1

= 0 (201o47)
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Thus a general expression for the transformed mag_e._£c field is

(20 io 48)

A comparison of Equation (2.1.23) with Equation (2.1.26) shows that

Equation (2olo48) can be written as

k2'b +
0 0 "-'

J (201o 49)

In the limit as k2----_O Equation (2.1 48) becomes
0 _ °

I

J
1 1

H --J -" "
o a

(2° !o 50)

and similarly, Equation (2olo49) becomes

i\

H =J
o a

(2.lo51)
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Further insight into the meaning of Equations (2olo50) and (2olo51)

can be obtained by employing a different derivation° One of Maxwell's

equations is

VXH = j _ E K E + _ (201o52)
O

Taking the curl of Equation (2olo52) and setting _ • H = 0 gives

v_ _=- j _ e VSK_-VX7 (2ol.53)
O

In the low frequency or quasi-static limit, E = - V _o Substitution of

this in Equation (2olo53) gives

_72 H = j _0 E VXK V _ - VE_ (201o54)
O O

If K is a scalar the first term on the right hand side is identically

zero and H and _ are related only by the point form of Ampere's law
O

for direct currents° If K is a tensor_ the term containing K is not zero

If

in general and thus contributes to H . Evidently in an anisotropic medium
O

an irrotational electric field can contribute to the magnetic field° A
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convenient expression for the magnetic field can be obtained by taking the

Fourier transform of Equation (2olo54)o This gives

=' j
H =_o

k

= _
k _o K_

(2.1055)

H = J
o _--7- kXJ

k 1
(2.1= 56)

Equation (2o1055) can be written in rectangular components as follows:

H= J 4

o k2+k 2+k _
1 2 3.

k &+k J +k
-x Y 3 _

K_ (k2+k 2)+K 1¢2

- 1 2 0 3

(K -Ko)k2k3=JK klk

(K -K )k k -jK k k
o 13 23

jK (k2+k 2 )
1 2

k3-k3
1 Y 2 x

>(2.1o 57)
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It can be shown that this low frequency expression for H is identical to
O

_g

Equation (2olo51) (i_eo H = H )o The advantage of this derivation is
O O

that it displays the low frequency magnetic field as the sum of two terms

(see Equation (2olo55)), the first term being identically zero in isotropic

media and the second simply a statement of Ampere's law for direct

currents° The meaning of the first term can be clarified be relating

It to the induced current which flows in the medium due to the quasi-

static electrlc field° Equation (2olo21) shows that

J=- jcoE KE
O O O

o 0

=-j wE E - a E
0 0'. 0

(2° 1 °58)

in which ff is the conductivity tensor°

a current density _i in the medium, _i

If the electric field
O

is given by

induces

Ji = (r E 0
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=- J -JwE E
o o

m m m

K kk o J "_
= - _ . - j ¢o 6 E (2ol.59)

k o K_ o o

The induced current is seen to consist of two parts; the first part is

irrotational only when K is a scalar and the second is always irrotationalo

The magnetic field resulting from the quasi-static induced current is

givenby

= j ~
H. =- kXJ.

-j kZK k k J
(2.1o60)

This expression is exactly the first term of Equation (2.1o55) which now

may be written

= = j ~
H = H° + m kX J (2olo61)

l _2
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m

The existence of an induced magnetic field H i in the low frequency limit

suggests that unusual electrcmagne%!_: effects may be predicted by quasi-

static theory when it is applied to problems In anisotropic media.

Propagation effects in magnetoplasm_s,: and ferrltes have been described

9_10
in the literature in connection with source-free problems_ a problem

which includes sources is the subject of this report and it will be shown

in Sections 2.3 and 2.4 that the quasi-statlc theory predl_s a form of

radiation°

The low frequency behaviour of the field quantities may be

summarized by noting their proportionality with respect to frequency

when expressed in terms of an operation on an assumed current density _:

1 1

4boc _, _.o_ -CO 3

A = consto, H = consto

(2.1o62)

The infinities in _ and E at co = 0 arise from the fact that _ is assumed

to remain constant as co--_0o It would be more realistic to base field

calculations at co = 0 on some assumed charge distributlono Since an

oscillatlng charge distribution p is related to a current distribution by

the equation of continuity

m

o J + j ¢o p = 0 (2.1.63)
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it is clear that an assumed charge distribution would produce a finite

and E at _ = 0o

The existence of quasi-static field expressions suggests that the

Poynting theorem might also be expressed in a quasi-static form° The

Poynting theorem is often written as follows:

V V S:

In the quasi-static limit the relations of Equation (2ol.62) indicate that

m,
the B o H term is negligible. A more useful limiting form of the

Poynting theorem may be derived by substituting

(2olo65)

in the surface integral. This gives

f= _,_v___j_ °_ o_,)_v._f(_,°-_:,)o_
V V S

(2.1¢66)

I
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The first surface integral can be simplified using the vector indentity

--* --, --,

_XH = _TX_ H - _ V_H (2.1.67)

and the conjugate of one of Maxwell's equations,

VxH = - j ¢o D + # (2.1.68)

If it is assumed that _ = 0 on the surface S, Poyntlng's theorem becomes

(2. I. 69)

V V :S

In the quasi-static limit the relations of Equation (2.1.62) indicate that

the B H and AXH terms are negligible° Thus a quasl-static form for

Poynting's theorem is

f f° J dv = j¢O E ' D*dv + jco dd D*

V V S

An ds (2.1.70)



29

This formula is similar to the well known energy expression to be found in

textbooks on electrostatics_ A similar formula for the magnetostatic limit

may be derived if H is expressed in terms of a magnetic scalar potential°

The surface integral of the magnetostatie formula gives a result identical

9

to that obtained by Trivelpiece and Gould in their equation numbered

(Ac I0)

The quasi-static field equations and Poynting theorem discussed above

constitute a body of theory sufficient for a study of the near fields of a

short antenna in a magnetoplas_ Before proceeding to the antenna

problem) it is worthwhile to examine the form of the quasi-static

differential equation° Equation (2olo9) may be expressed as

I Vo_

O

where

Let us consider the lossless case in which both K' and K are real. Some
O

informafion about the potential _ may be obtained from a study of the

characteristic surfaces of the above differential equation (see

Sneddon 14 for instance). The nature of the characteristic surfaces

depends on whether a 2 is posltive or negative_ the equation is elliptic

when a 2 is positive and hyperbolic when a 2 is negative (see Figure 2o1.1)o
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An elliptic equation has complex characteristic surfaces and thus no

physlcal significance can be attached to them° A hyperbolic equation

has real characteristic surfaces along which discontinuities _propagate _'

(i0eo cannot vanish)° Thus under hyperbolic conditions any discontinuity

in _ o J will cause a discontinuity in the electric field (-V 4)

extending outward from the region where the source current _ is

localized°

The equation of the family of characteristic surfaces may be derived

easily by writing the quasi-static differential equation in cylindrical

co-ordinates for the axially symmetric case° If r is the radial variable

andZ is the axial variable, Equation (2o1071) becomes

1 1 v0_
_rr +- _r +- _zz = K' (2.1o72)

r a2 j _o 6 °

The equation for the characteristic surface as given by Sneddon is

_.2 + a_ = 0
(2olo73)

in which the dot represents differentiation with respect to some parameter°

The solution is



32

1
z = + J -- r + consto (201o74)

a

which represents a family of cones when a2 is negative. Therefore any

source discontinuity at a point will result in a conical field dis-

continuity emanating from that point° Under hyperbolic conditions

the field of a short dipole should contain three discontinuity cones,

two emanating from its ends and one from its center° These cones are

evident in the field formula to be derived in Section 2°2° Thus the

most prominent feature of the field solution has been obtained without

a detailed solution°

2°2 The Field of a •Short Dipole

As shown in Section 2ol, the quasi-static differential equation is

' q (2o2ol}
K (_bxx + _yy) + Ko_bzz = - _"

O

..This may be written as

1 _zz " q
_xx + _yy a2- = _o _, (2°2°2)

o
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where

O

The solution will be obtained using the Fourier transform pair

f.(_)-- f (_)e -jk°r

-oo

dx dy dz

(2°2°3)

:f (r)--_ _ (_) e j_or dk I dk dk
12_)s 2 $

..oo

The transforms can be used to _solve Equation (2o2,2) and the solution can

be expressed as

oQ

_b (r)- 1 q (_)e jk°r

E K ' (2y) 3 ,2 .2 k2 dk dk dk (2o204)
K + K- + 3 1 2 3

o -oo 1 2
2

a
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The transform of the charge distribution is

q (_) : q G)e- j(klx + k2y+k3z) dx dy dz (2_2o5)

This can be written in the (%y_v) coordinate system as shown in Figure

2o2olo Both r and _ can be transformed as follows:

x = u sin 8 - v cos e

z = u cos e + v sin e (20206)

k = k sin e + k cos e
i 3

_v

k =-k cos e + k sin e
i 3

(2°2°7)

,,v

Now q can be expressed as

O0

q (_') = q (u, y, v)e-J (k u + k y + k V)du2 dy dv (2°2°8)
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x_

_y

Z

V

Figure 2°2,1 The co-ordinate system
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The dipole field will be derived from the filamentary_ triangular

current distribution shown in Figure 2.2°2° The corresponding charge

distribution is obtained from the equation of continuity°

8J

-- 1 u 6 (y) _ (v)
q (r)= j_o

1

jO_L
T(u) 8(y) 8(v) (2.2.9)

The function T(u) is shown in Figure 202o3° The transform of the charge

distribution is

e-Jk' ' 1

~ - ] " L jk L
q (k) - . , 4. e - 2 (2o2o10)

O_Lk

This can be substituted into Equation (2°2°4) and integration will result

in an expression for the potential _0 However, for impedance calculation,

the electric field parallel to the current (Eu) is required°

E (r)-
u 8u
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Ju = 14- _u Ju = I- LL

Figure 2.2.2 The assumed current distribution
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-1

I
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; (,') - __
T(u)

F£gure 2:.2.3 The charge distribution



K _3_ (2_') s e L
o

oo j(k u+k y+k v)

III eg+eik g_2 e

k 2

_oo k2 + k2 +
i 2 2

a

dk dk dk
1 2 3

39

j_6 KL
o

[ I(L) + I.__L) - 2I(o)!
(202o11)

The integral I(L ) can be expressed as

oo

I (L) = (2Y) s

--o0

j[k1_ (x-L sine) + k y + k (z-L cose)]2 3

k2

k 2 + k2 +
1 2 2

a

(202.12)

dk dk dk
1 2 3

Employing a transformation to cyiindrical uuu.,...._=+_.-_,

cos_l k = _ cos_x - L sin8 = Pl 1 -

sin_l k = _ sinkY = Pl 2

z - L cos@ = z k = k
1 3 3 ., (202.13)
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we can write

co 2_

•..oO _ O, 0

J[_ Pl 3 i
e

k2

a

drl dy dk ",
3

co co

. f/e(2_)2

-oo o

jk z

3 i Jo (_/ O)

k 2

y2 +_L
a 2

dydk
3

(2.2.14)

since

1

J ('y Pl) -o 2_"

217

f
o

J_ Pl cos(q- _1 )
d_ . (2.2.15)

t , i
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The next step involves contour.integration with respect to k .
3

It is convenient to designate by."a"':.the square tootDr K'/K which
o

has a positive real part_ however small, Under Iossless hyperbolic

conditions (a2 negative with v=-0) the correct choice for "a" must be

made by taking the limit as the collision frequency (v) approaches zero°

The contour integration gives

oo jk z ¢o jk z

dk = _ e dk

_- k 2 3 2# (k + jay) a_ ) . 33
__ y2 +._ -.oo

2
a

a

2

-ay Iz I
e

Y
(2o2o16)

The integration contours are shown in Figure (2.2.4)
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C
1

is used for z posi_ive and C for z negative°
i 2 I

Integration with respect to y completes the evaluation of I
(L) °

co

-a_ Iz1 II(L)= _ e Jo(_.pl) dy

o

:_ (_ + a2 .2 )-½
47; I 1

(2o2o17)
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Similar expressions for I.(_L ) and I(o ) may be derived°

nomenclature

Using the

p 2 = (x-L sinS) 2 + y2 z = z - L cos@
1 1

= (x+L sinS) 2 + y2 z = z + L cos8
2 2

D2 = x 2 + y2 z = z
o o

(2o2o18)

we may express the electric field parallel to the dipole as

r i ' Iu j co4g 6 K L p + a 2 z 2 P + a 2 z2 P + a2 z2
' o

o 1 2 i

i

(o o i 9%

Under lossless hyperbolic conditions (a2 real and negative)_ E
u

comes infinite on the surfaces p2 + a2 z2 = O_ p2 + a2 z 2 = O_ and
1 1 2 2

be-
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p2 + a2 z2 = 0¢ These surfaces are cones emanating from the ends and
o o

center of the dipole° Their discovery was anticipated by the discussion

of the differential equation characteristics in Section 2.1. In addition,

inspection of Equation (2.2.19) shows that phase shifts across the conical

surfaces occur under hyperbolic conditions.

2.3 The Impedance of a Short Dipole

For an input current of unit magnitude, the input impedance of an

antenna with a conducting surface is given by

Z_hn= - i "_ ° _ ds

S

(2o3ol)

where S _s the antenna surface, In this formula J ls the current density

on the antenna surface and E is the electric field at the antenna surface

when the conducting material in the antenna is removed° This impedance

formula may be derived using the "reaction concept" and such derivations

have been discussed recently by Richmond 15 for tsotroplc media. These

derivations are based on the Lorentz integral relation between any two

solutions of Maxwell's equations (the solutions are numbered 1 and 2):

f( x - da= - K .H- . + )
E _(H)

2 i J 2 1 2 2 1 2 1

A V

dv (2°3.2)

L
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where _ and K are electric and magnetic current respectively. This relation

may be written for a magneto-lonlc medium only if the sense of the magnetic

field is reversed for one solution (say number 2). If the volume V is

the entire space exterior to the antenna, the surface integral at infinity

vanishes and there remains

m

(E×.H - _ZH ) • n ds = 0 (2.3,3)
1 2 2 1

S

where _ is the antenna surface (see Figure 2.3.1).

-nX E = K then
1 1_

and
1 1

o ds = oE
. ! 2

S'

ds (2°3°4)

If the gap is narrow_

Kl" H2 ds

=- V
1

1
2

(2.3.5)
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S
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CONDUCTING SURFACE

OF ANTENNA

SOLUTION I SOLUTION 2

Figure 2.3.1 Derivation of the impedance formula
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where V and I represent source voltage and current= If J = J = J and
I 2

V 1
I = I = I and the input impedance is defined by Zin =_i_'_ then

1 2

_ zZin = iT. 2

S

ds (2°3.6)

which reduces to Equation (2o3ol) for unit source current° Since solution

2 requires reversal of the DC magentic field_ E must be calculated under
2

such conditions° H at the gap is completely determined by the source
2

current and thus is unaffected by the DC magnetic field reversal° However

in the quasi-static theory for an infinite medium all solutions for the

electric field are independent of the sense of the-DC magnetic field° Con-

sequently in the impedance calculations to follow_ Equation (2o3_1) may

be used just as it would be in free space_

The impedance formula for unit input current (in the (u_y,v) coordinate

system) is

-fJoZin = Eu ds (2°3°7)

S

Transformation to a cylindrical (u,r_) coordinate system (as in

Figure 2°3°2) gives
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2Z

ANTENNA

SURFACE

U

Figure 2.3.2 The cylindrical co-ordinate system
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y = r cos_ , v = r sin_

If the current is spread uniformly over the antenna surface_ the current

density is

U

L
j = -- 6 (r_p) for u> 0 (2o3 8)
u 2_p °

U
1 +--

L 5 (r-p) for u_, 0
= 2_p .....

In order to simplify the calculations_ one can obtain an expression for

the impedance of a monopole of length Lo The impedance of a dipole of

length 2L is Just twice the monopole impedance° T_e monopole impedance is

2ff L

Zin=-_- (i-_) Zu

o o

(u,p,@ du d_ (2°3° 9)

and Eu (uwp_) is given in Equation (202o19) o In the cylindrical
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coordinate system_

p2 =
1

2

<=

[ (u-L)sine-p cosesin_]2+ [pcos_]2

[ <u+L)sine-p =osesin_]"_ [poo_e]2

[ u sine- p oosesln_]"+ [-pcos_]"- (2o3olO)

Z = (u-L) cose + p sine sin_
1

z = (u+L) cose + p sine sin_
2

Z ----_

0
u cose + p sine sin_ (2o3o11)

The expression for E may be simplified by introducing
U

F = 1 + (a2-1) cos2e

G = 2p (a2-1) sine cose sin_

H = D2[1 + (a2-1) sin2e sin2_] (2o3o12)
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Thus

2 a 2 z 2
Pl + _ = F_u_Lj2t_ + G(u-L) + H

+ a2 z2 = F(u+L) 2 + G(u+L) + H
2 2

+ a 2 z 2 = Fu 2 + Gu + H
O O

(2o3o13)

The monopole impedance is

Zin =

-a

J_ 4_E K L
O

27/

27/

O

(I + I -2I ) d_
1 2 3

(2o3o14)

where

I1 = f _ F(u-L) 2 + G(u_L) + H
0

(2o3o15)

2 GI_ I_0

- 2_G o_i in _F(F o.2+ G a + H) + 2F _+

L
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(,)
nf I-_ a_I z

o _ F(u+L)2 + G(u+L) + H

1 I_ F a24_ Go. + HL F
,. _ ,, i in F2 _F(F 0. 2

2F d_- L
+ Gct +H)+2F a + _Gj_ a=2L

-j
o.=L

+ 2 in

4- G a +H) + 2F ct, 4. G_

a=2L

a=L

(2o3o16)

1
3

o _Fu24' Gu + H

i{L

n

_F CL2+ Gct + H G i
.... 111

2F 2 _JF(F a2+ G a + H) + 2F a+G]la=L

ct=O

ct + H) + 2F a + G]I

Ct=L

(I.=:0

(2o3o17)
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In order to make the expressions more compact_ let

N (a) = _F a2+ G _ + H

(2° 3o 18)

The sum of the above integrals is

I + I- 2I _
1 2 3 -i E3N(o) _ 3N(L) + N(2L) _ N(.L) ]FL

G i M(o) 3 M(2L)

+ 2FL F 1_ (L) M(-L)

2 M(o) M(2L)
+ a in (2o3o19)

If it is assumed that p << L_ then the above formula can be greatly

simplified:
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I ÷ I -21 : 2-- [1-1n _L
i 2 SF_--L F÷

(2°3°20)

cos8 sin_)]

Substltution of the above i:n _quation _2'_3o14) gives

2_

. 'I-' _ .n - 1,+lnF-
Zin- j_2W'_:! K L _ P _'_

O

+(a2-1)sine cosesln_)d_(2.3.21)

It can be shown that

" ]'[.f_(_in2_ sln(_) de = 1 2
2-_ _ (sin2 (_

0

_-sin_) +f(si.n2_ sin_)] de (2°3°22)
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from which

27/

'fc
0

-t)sin2e sin2_+ (a2-1)sine cose sine> d_

= 1 in +(a2-1)sin2e sin2_ - (a2-1) 2 sin2@ cos2e sin 2 d_

O

= in _+_a (2o3_23)
2

Substitution of the above in _quation'. (2_3021) gives

a_ [inL__ a_F] _.3.24,o
Zin: jc02_6 K L _ _ 1 In 2F

O

where F = sin28 + a2cos2e and a 2
K

K
0

This formula give's the input impedance of a short_ thin monopole making an

angle 8 with the DC magnetic field° Two special cases are of interest_
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8 = 0 (monopo]e

C o

parallel to HDC) and e = _/2 (monopole perpendicular to

Parallel case:

Z
in

1

JOJ2_'E K L
o

[L ]ln_ - i + in a
(2.3°25)

Perpendicular case:

Z
in a n---l-in

jco2Y6 E"L P
o

(2° 3° 26)

V

In free space (K = K = 1) the above impedance formulas reduce to
o

_ i in _ -
Zin jo_2_'F L

o

(2°3°27)

which can be found in any discussion of short, cylindrical antennas

(Schelkunoff andFrlls 16 for instance)

It is interesting to observe that impedance formula, Equation (2°3°24),

can be re-written in the same form as the free space impedance (Equation

(2.3,27)) if the dimensions L and p are suitably scaled. That is,



57

L--r .
Zin = J_o2_ L _

""0

where

L = L sln2e + K cos2e
o

and

f

p °
2 K'+ cos 2e

The significance of this scaling will be discussed further in Section 2°5°

The above impedance expressions all contain the logarithm of a function

of "a". When the medium is lossless and hyperbolic_ the logarithm produces

a positive_ real part in the input impedance. This indicates that the

antenna transmits energy irreversibly into the m_etSplasmaoo It will be

shown in Section _.4 that this energy transmission is in fact a form of

radiation.

Numerical impedance calculations will be presented in Chapter 3 along

with the experimental results.

2°4 The Poynting Theorem and Calculation of Radiation Resistance

The radiation resistance of an antenna can be obtained by integrating

the real part of the Poynting vector over a closed surface surrounding the
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antenna° Since [:b.equasi-static theory for a lossless plasma predicts a

dipole impedance having a positive real part_ this real part should be

the radiation resistance° Therefore, as a check on the impedance calcula-

tion_ it should be possible to compute an identical radiation resistance

by integrating over a surface at an arbitrary distance from the antenna°

In addition, it is important to establish that the total outward power

flow is independent of the distance between the source and the surface of

integration_ this assures that the power flow has the characteristics of

radiation and not of int:rlnslc loss _'I (apparent power dissipation In',a

finit_ iossless region) o

It is necessary first of all to write the Poynting theorem in a

form readily applicable to quasi-static analysis° Equation (2olo60) is

in such a form and is repeated here for' convenience_

' J dv = j_o D*

V ,V :S

(2o4ol)

in quasi-static theory_ the addition of a constant to the scalar potential

leaves the electric field unchanged In Equation (2o4.1), the addition

of a constant to _ leaves the equation undhanged provided that there is

zero net charge within the surface S

Let us now compute the outward power flow from a short monopole

(or dipole) which is oriented parallel to the DC magnetic field° This



restriction simplifies the computation whlie preserving the esgential

features of the analysis. The outward power flow P through a surface

S is given by

59

r
P = -J_ I

,J
S

D*_ _ ds (2°4.6)

in the quasi-static limit° For a monopole_ the surface S, can be a

closed cylinder as shown in Figure 2o4.1. For P to have a real partj the

product _ _o _ in must have an imaginary part. This can occur only under

hyperbolic conditions and then only between the characteristic cones

emanating from the ends of the antenna. Thus P will have a real part

only over the shaded region of S.o The surface _ can be removed to
I 2

infinity and then neglected, at least for the computation of real power

flow.

The necessary field expressions are

p2 +a2(z+L)2 p2+a_ (z-L) 2 p2+a2 z2

(2.4°7)
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S = S_+S2

, /SI

-s.
'/i "_ _ _ _ _ _ 'CONES

CONDUCTING PLANE "_'_MONOPOLE IMAGE

Figure 2.4.1 Radiation fields of a monopole
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L

p2+a2 (z+u) z 2+a2 (z-u) z

du (2.4.8)

!

where M = @4_E K L
o

The power flow through S is designated P where ....
1 1

f
p = -j_ !
1 J

S
I

_*._n d_ (2.4.9)

0029

o o

_(p,z) E* QO, z) pdCdp
z

:¢

=°I_(p,z) _.* QO,z) d_
z

where

q = -j_fE K
o 0



-Q_l 2 1
Pl- "-- p2+a _ (z+u) 2 1tfl- +

2 1 4p2_p2 +a2 z 2

du

62

-Qlal2 ]
=,. _ I

ij ij
o

du where i=i_2 and J=132:3 (2.4o10)

indicates an integral formed from one of the six products in-
Here, lij

dicated above,. In general the real part of P comes from the imaginary
1

parts of the integrals lijo Imaginary parts arise when a2 is negative

(say a 2 = -C 2) and over a limited range of the variable p2. For instance,

consider the integral 1
11

OO

i:f11

o

dp 2
(2.4.11)
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It is evident that the imaginary part of I is given by
II

j ImI
.. 11

p2=C,Z (z+L)2

-f dp

p2=c2 (z+u) 2

(2.4.12)

= j 2 tan /P2-C2 (z+u_ 2

oZ=c2 (z+-L)2

p_=c2(z+u)2

= J 2 E%an-1 °0-tan'lo_

= !_J nY where n is an odd integer (2.4.13)

It can be shown readily that IN I = - Im I
•.- 21 :: 11

3 Im I = - Im I and
22 12 _

Im = + Im I Thus
23 13

IL
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j Im I . = 2 j Im I (2o4o14)

ij ij 13

p2=c2 (z+u) 2

= -4fp 2
• =_ Z2

4 p2_c= (z+u)2 (_ p2_c2 z2 )*

rp2 =C2 (Z+U) 2

= 4jJp 2 Ca z 2

dp 2

_C 2(z+u)2-/_ _p2-Caz 2

= + m 4jY where n is an odd integer:; (2.4o15)

The correct value for + n can be determined by introducing a small loss

and observing the locations of the points p2=e2z2 and p2=C2 (z+u) 2 in the
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• ' K'complex p2-plane There are two cases of interest, K < o and > o.

These cases correspond to the two hyperbolic regions in a YZvs. X graph

(compare with Figure 2.1.1):

K' >0

o 1

X

In the complex p2_plane, the real axis is the path of integration. If

t

K > o the points _z 2 and _(z+u) 2 are below the real axis. If K < o

the two points are above the real axis. Thus the imaginary Part of the

integral (the "phase change") is negative for K > o and positive for

K' _ o. In addition the total phase change of the integral can be no

greater than W in magnitude so that n = i.

Thus j Im _ I = 4 j _ if K > o (2.4.16)
ij ij

!

= - 4 J _ if K < o

If P is the real outward power flow through the surface S ,
r 1
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P

r

L

I j Im _ °du_ IiJ

0

(2o4.17)

(+ 4 j _) L
D

I ¸ i+ sign for K > o

<_- sig.n for K < o

t

-(rJo_E K .)
,/, ' 0 O •

(0_41;EK' L)2
o

L

1 (2+ 4+ 18)

4COLe I K I
o

If the input current is unity then the radiation resistance is given by

Rra d 1= , (2.4+19)

4_L_ IK i
o

From the former impedance calculations for a monopole we have
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Re (Zi n ) =
in a

(2.4.20)

÷
= - J _/2

!

J_2_E K L
0

_ t

si_ for K _ o

!

sign for K _ o

1
!

4_L_ IK I
0

= R (2.4.21)
tad"

It has been shown that the real power flow is independent of the height

"z" of the surface S and that the radiation resistance is equal to the
1

real part of the input impedance. This indicates presence of a mode of

radiation which is most unusual because it can have a pronounced effect even

for a very short antenna. The explanation for this phenomenon was suggested

in Section 2.1 where it was shown that an irrotational electric field in-

duces a magnetic field in a :.m_gn_toplagm_ making possible electro-

magnetic effects such as radiation. However it remains to be shown that it

is the induced magnetic field H. which is totally responsible for the real
1

part of the total outward power flow P. This can be done by writing

S

(2.4.22)



68

and using the quasi-static electric field together with the total low

frequency magnetic field° The latter is given in Equation (2olo61) as

H= Hi + _2

Evaluation of Equation (2°4°22) for the case of a monopole parallel to

the DC magnetic field gives the same integral already evaluated

(Equation (2o4o10))o Furthermore the real part of the outward power

flow arises entirely from the induced magnetic field Hi o

2°5 Derivation of the Impedance Formula by Dimensional Scalin_

Consider the problem of transforming_,%he anisotropic differential

equations into equations having the same form as the free space differential

equations° In the quasi-static theory three equations are important_ any

two of which are independent° They are

i x 2 Y z
o

(2oSol)

V o _+ J O_q= 0 (2 o=S_°2)

KI_xx + K2 _YY + K3_ZZ - J_E V ° J (205o3)
o
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where KI, K2' K3 are the relative permlttlvltles in the x_ y, z coordinate

directions (respectively), q is the charge density and _ is the current

density. A time factor ej_t is understood.

Dimensional scaling of the following form will be considered:

x' = a x, y' = (3 y, z' = y z . (2.5.4)

In order to transform the "anistroplc Laplaclan" into an "isotropic" or

ordinary Laplaclan, it is required that

_*xx÷_% ÷_*..--_%,x,, 2 3
. _,y,y,. %,.,) (_.5.5)

=CA'

where C is some constant. Substituting the scaled variables on the left

side and equating the coefficients gives

a 2 K _2 K _2 K
..____/.I= ____-2. = _ = 1 (2.5.6)
C C C
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or

c _. c y,
K "_ ='K"" :_ = K

_ 2 3

(2°5°7)

After transformation, the divergence of the current density becomes

m

V o J = a _ V V'o J'

Equations (2o5ol) and (2°5°2) can be expressed as

-q
c,_' @= -g.-

o

(2,5.9)

(__ y Z',• "_'+j_q=o (2.5oZO)

If it is assumed that C and a _ y are not zero, Equations (2°5°9) and

(2.5o10) become

q
z_ @=-_---_

o

(2oSoZZ)
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a by
(2.5.12)

These can be reduced to the free-space form if _ and q are suitably

transformed_ say to _' and q'.

q' = q (2.5.13)

_q

co, q, = a _ y (2.5.1g)

It is necessary to put some restriction on the frequency and charge

scaling. First let it be assumed that _,=c0 (frequency-invariant scaling).

Equations (2.5.13) and (2.5.14) give

c = a _ _ . (2.5.15)

Equations (2.5.6) and (2.5o15) can be solved for a_ _ y, and C, giving

C = _KIK2K 3
• (2.5.16)
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Now let it be assumed that q' = q (charge-invariant scaling)°

is apparent that

C = I

It

(2o5ot7)

and from EqUation (2o5o7),

1 ^ I i

3

(2oS.18)

To summarize, there are two principal types of scaling, one frequency-:7

invariant and one charge-invarianto

a) Frequency-lnvariant scaling_

!

x _ = [K K x co' = cO (2o5L19)

q 2 3

y'=[KK y q'= q
13 KKK

123

t
z _ = |K K z

I 2

b) Charge-lnvariant scaling:

x_ = x/_1 u_ = u_/_K KK1 2 3 (2°5020)

Y_ = Y/*_-'_2 q' = q
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Either of these two methods of scaling converts the equations of free-

space form

Z_'_= - q---_
E

O

(2.5.21)

m

V _ J' + J w' q' = 0 (2.5.22)

l v'
jw'E

0

(2.5.23)

to Equations (2.5.1), (2.5.2)_ (2.5.3)j respectively_ Since frequency

(rather than charge) appears explicitly in the quasi-static impedance

formulas, frequency-invariant scaling is to be preferred.

For a magnetized plasma with the DC magnetic field oriented along

with the z axis, the scaling is somewhat simplified.

a) Frequency-invariant scaling:

X' = _ X

o (2.5.24)

y' : _K' KO y

z' = K' Z

q_ m

q •

K' 2K
O

b) Charge-invariant scaling:
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y_ = y/4]_ q' = q

Z _ _ Z/_ O

By means of scaling, the quasi-static differential equations may be

transformed into free space equations° If the scalingtls applied to the

dimensions of a cylindrical dipole, the equivalent free space dipple can

be shown to have an elliptical cross section (for the case of real 3 positive

scale factors)° This free space dipole, in t_rn_ has a free space equivalent

with a circular cross section° Thus the impedance of a short dipole in an

anisotropic medium may be found by a simple scaling of the well-known

results for cylindrical antennas in free space° The details of this

approach to the problem w:ill be worked out in the following paragraphs.

Frequency-lnvariant scaling will be employed_ The scale factors are

given by

_ z' = K _z (205°26)x' = K'K x y' = K' K y ,
0 '_ 0 -"

The co-ordinate,system is shown in Figure 2o5olo

The length scales easily If x' z' are the projections of the
•

scaled length L' and x, z are the projections of L, we have
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Z Z L

u

v V_

_y . _x

x

Figure 2.5.1 The co-ordinate system in the magnetoplasma
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L _ =_ x _2 + z w2 =_'- _Ko x2 + K, z2

=_ _K sin2e + K' cos2e Lo
(2,5,27)

The radial scaling is somewhat more involved. The circular cross

section of the dipole is given by the equation

v 2 + y2 = p2 (2°5°28)

where

u = z cose + x sine

v = z sine - x cose (205.29)

After scaling, the above cross section equation becomes

z' sine x' cose

K' _ K' K°

2 _,2 = p2 (2 5o 30)
+ K'K °

o

The co-ordinate system is shown in Figure 2°5°2. The co-ordlnate trans-

z')--_(u' ) is given byformation (x', _v'
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!

Z

i

V

U

NTO PAPER )

Figure 2.5.2 The free space co-ordinate system
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z_ = u t cos8 + v' sine
o o

x' = u' sine - v' sine
o o

(2.5o31)

The relation between e and e is
o

m "X

tane z' = _ = tane.o Z
(2.5.32)

or

or

sine
o

_K-osine

K sin 2 e +K'cos2eo

(2.5.33)

cos0
o

cos e

in2e + K'cos2e

(2.5.34)

Now the cross section equation becomes

V 12
K sin2e + K' cos2e'_

o ) + y,2K' 2K
o

(2.5.35)
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or

v _2

K sin28 + K' cos20
o

+ - i (2.5.36)

This is an ellipse with seml-axes

P K2" _o

A = , B = p _K' Ko (2.5.37)

Kosin20 + K' cos20

Thus there exists an equivalent free space dipole having an elliptical

cross section°

Y. To Lo 18 has shown that a dipole with an elliptical cross section

has an equivalent with a circular cross section, the radius of which is

given by p' - Thus the radial scaling can be written as
2

p' = + (2.5038)

K sin2e + K' cos2e
O
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The impedance of _ short cylindrical monopole in free space is

usually expressed (see Schelkunoff and F=i_s15 as

1

Zin =

JO_2_E L'o

(9..8.39)

When L' and p' are transformed as indicated above, the formula becomes

Z
in

J 2,E..oL  - Kosln e+ K,cos e

2(K sin2e + K'cos2e) )]

+ Ln ' o (2.5.40)

This formula could have been derived using charge-invariant scaling,

which involves the slight additional complication of a frequency scale

factor° The abo_e expression is identical to the one obtained by solving

the anisotropic source problem without recourse to scaling.

2°6 The Effect of a Cylindrical Current Assumption on the Computed Impedance

The analysis in the preceding sections of Chapter 2 has uncovered
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unexpected phenomena associated with lossless_ hyperbolic conditions in

the :magnetoplasma_ The fleld of a short dipole exhibits infinite

dlscontlnuitiesoand its impedance has a real part_ indicating radiation°

Since such a phenomenon may be caused by a poor choice of current dis-

tribution_ this section and the following one are devoted to analyses of

two different current distributions° This section considers the tri-

angular current to be spread over the cylindrical surface of the dipole

rather than being concentrated in an Inflnlteslmalfilament along the

dipole axis.

For the sake of simplicity_ both the dipole and the DC magnetic

field are @rlented in the z direction° Because oZ cylindrical symmetry_

the differential equation may be expressed in cylindrical co-ordlnates

as

-- l q
I #r + m _zz = e K'

%_rr + r a2 o
(2°6°i)

This equation £_ to be __i._ _ ,.,_+heh_ help of the transform pair

oo _@

f(z,r) e_jkz Jo(_r) r dr dz (2.6.2)

ifff(z,r) = _-_

--oO O

f(k,_) e jkz J (_r) y dy dk
o

(2.6°3)
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If the differential equation is transformed, solved algebraically and

re-transformed, the potential can be expressed as

oo oo

(z,r) = 2_ K--_ k2

-oo o a2

ejkz Jo(Vr)v d V dk (2o6o4)

In order to find q, it is necessary to consider a current distribution J

which is spread uniformly over a Cylinder of radius po The corresponding

charge distribution is

l a J(z) 5(r-p)
i q= -_ _'z
I J _ z_p

_ 1 TCz) 5(r-p) (ZoSoS)
J_L 2_'.0

for which the function T is shown in Figure 2o2,3o The transform of q is

q(k,v) = i (e -jkL jkL )2/TOJLk + e - 2 Jo (_/P') (2° 6o 6)
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The potential _ at any point (z,r) now can be expressed in terms

of an integral°

oo oo

f f -jkL jkL
(z, r) = 1 e + e -2

i25)2¢°E K'Lo _oo o k(_ k21+aT

(2.6.7)

Jo(F p_eJkZJo(_r)y[ d F dl_:

For impedance calculation_ it is necessary to have the electric field in

the z direction at the dipole surface (r=p) o

co _o

Ez (z,p) 1 __I f e-jkL eJkL

_- + -2

k2
(2g) 2jcoE K'L _2 + m

o 0 _2

eJkZ_ (MO) y dy dk (2.6.8)
o

If the integration with respect to k is carried out as in Section 2o2_

E becomes
z

a

E (z,p) =z 4Yjo_6 K' L
o f (e-a'y[ z-L[+ e-aYI z+LI

o

-2 e -aYIzl) ,,_o(yp)dy (2.6.9)

The following integral relation can be used tosimplif_::' the calculations:
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=/2

Ie f
o o _ #_ _ (_c°s$)z

(2o6_10)

Now E can be expressed as
z

E (z,p)=
z 4_J_ K' L

o

o_2 1 ,$ 1 ,

2 (L.z)2+(2pcos_)2 _a z (L+z)2÷(2pcos_))2

2 1 d_) (2.6o11)i a zz_+ (2pcos_)

The expression inside the integral sign now has the same form as Equation

(2.2o19) 0 Integration with respect to _ can be delay?d while the impedance

calculations are carried out as in Section 2.3°

The impedance of a monopole is given by

L

Zin : (i- E ) Ez

o

_,Z) dz. (2o6o12)
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If the integration with respect to z is carried out and if the assumption

is made that (2pcos_) 2 << ( lalL)2_ the following formula may be written

by analogy with Equation (2.3.25):

1 2 n L
Zin = JCO2_ KiL ' _ 2pcos_ "_ _ in d_ (2.6.13)

0

0

However,

in(2pcos_) d_ = in p (2.6.14)

Thus;

Zin = J_2_( K'L n _- 1 + in (2.6.15)
0 _-

which is identical to Equation (2.3.25). It may be concluded that the

assumption of a filamentary current (in Section 2.2) introduces negligible

error in the impedance calculattun.

2.7 The Effect of a Smooth CurrentAssumption on the Computed Impedance

The field solution for a triangular current distribution contains

infinite discontinuities along the characteristic cones emanating from the



86

ends and center of the dipole (see Equation (202o19)). The discontinuities

in the field are closely related to the current discontinuities at the

source° In the following calculations; the current distribution chosen

is filamentary but has a continuous first derivative at the ends and

Center of the dipole°

For simplicity, both the dipole and the DC magnetic field are oriented

in the z direction. If J and q represent the corresponding current and

charge distributions, it is assumed that

for z > 0 J = 8(x) 8(y) - 3 + 2 (207.1)

6 .-_I-5_)z (1 z
jC_L 2 2//0 g)

(2.7.2)

1 z2 z_]
for z < 0 J = 6(x) 5(y) - 3- - 2 (2.7°3)

L2

e 5--_-Z- (l+"
q - jC_L2 2_'p "_ ) (2o7o4)

The transforms to be used are
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cO CO

_(_,k) = fff(P_z) e-Jkz Jo(Yp) pdpdz

.oo o

1 ff (_0) y d_ dk
fQO Iz) = _ _(Y3k) eJkzJ °

(2.735)

(2.7.6)

The transform of the charge distribution is

~ 6 z -Jkz z -Jkz
q_ z (I+ _) e dz z(l-_) e dz

j_L z
, O

(2.7.7)

After combining the two integrals and integrating by parts_ one obtains a

convenient form of q :

L

f •

: -__l_31 2u
co_I_. " _ (i - -"_) (ejku

0

+ e -jku) du (2.7.8)

The electric field parallel to the dipole can be obtained by a

transform solution of the quasi-static differential equation. The method

is_ent'1_al to the one employed for the previous field computations for

a triangular current distribution. The inverse transformation is carried out

as follows:



88

E 09,z) - -J
z

27/_ K _
o

oo oo

., k q _ eJkZ J (Y P) %' d_ dk

-oo o 2
a

(2°7o9)

Ez (p, z) = - -3
jw27/2 6 K _L 2

o

L oo _o (2o7oi0)

f 2u f/ eJk(z+u)+ e,Jk(z-u)(i- --_) _ ' ' "JoIyp)y d_{ dk du

a 2 k 2
o -oo 0 +

a8

-3a

J_2_'E K'L2
o

L _ (2o7o11)

f 2uf( -aylz+ui+e-aY_z-u[)Jo (_p) vdv du
- (z- ---_)

o o

-3a

jco21r6K' L2
O

(9.o7o12)

f 2u 1 i
(1.- --_) + ' du

2 + a2 (z+,_)2 _/9 + a_ (z-u)2o

-3

j_2_6 K _L2
o I 2z

(i+ --_) -I _ 2z -I a(L-z) -1 az
sinh " , ..... + (i_.--_) slnh _ - 4z slnh _.-

_ _EL (2.7o13)
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Note that the expression for E has no infinite discontinuities.
Z

If the input current is unity and the antenna surface is designated

by S_ the input impedance is given by

Zln=-
(2.7.14)

After the transformations

monopole becomes

z= t and _ = _ the impedance integral for a

0

_i -I i+_ + (1.2_)slnh "I(1-3_]+ 2_ I ) +2_)sinh -_-- /

t

(2.7.15)

The integral has been evaluated exactly but the final answer is quite

involved. To simplify the expressionj it is assumed that _p/a_ 2 << L2 .

Under this assumption the impedance is given by
r
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z (inaL)in- 3_2_ K _L p 1o375 (2o7.16)
0

For a triangular current distribution the corresponding monopole impedance

expression as derived previously is

1
Z
in j_o2_ K _ L

0 aL)in _--- 1 (2o7o17)

The two impedance expresslons are identical in form and only slightly

different in magnitudeo

The IEzl at ±he ground plane of a monopole is plotted in the

accompanying graph (Figure 2o7_i)_ The field of the smoothed current

distribution has no infinite dlscontinuity but instead it has a dis-

continuous slope Despite the difference in field magnitudes, the im-

pedance expressions are nearly identical°

Given the fleld calculations for the triangular current_ it would be

tempting to conclude that the real part of the input impedance arises

from some sort of energy storage in the vicinity of the characteristic

cones along which the electric field becomes infinite° In fact, such a

conslusion has been reached by Kalser6 in his work on the blconical

dlpole_, However the smooth current assumption produces a finite field

intenslty yet gives an Impedance expression almost identical to the one
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derived under the _iangular current assumption_ Thus the occurrence of

field infinlties is not necessary for the appearance Df a real part in _

the input impedance° This conclusion clearly lends support to the

radiation argument put forward in Section 2°4°
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3. VALIDITY OF THE THEORETICAL MODEL

3.1 A first-Order Correction to the Quasi-Static Theory

It has been shown (Equation (2.1.39)) that the total electric

field may be approximated at low frequencies by the quasi-static electric

field plus a correction term:

= ___ ..o+ o o + _ _ (3.1.i_
a a a 1

o

j _ k 2
-- ' 0

- _ a
o K_

(3.1.2)

in which

a=-_.K_

b = (K'2-K ''2) (k2 + k2) + K' K (k2 + k2 + 2 k2 )
1 2 o 1 2 3

The total low frequency electric field (Equation (3.1.2)) may be represented

as the sum of the quasi-static field E A and the correction term E B. Thus



94

(3ol °3)

Using parallel notation_ the low frequency input impedance may be

represented by

A B
Z = Z + Z. (3olo4)
in in in

From Equation (3 1_2)_ the expression for _B ts

_B._ -- _ +N J (3olo5)
a "k _ Kk 1

The case to be considered in detail is that of finding the electric

field E parallel to a current f11ament J The z direction is considered
z z °

in order Lo keep the computatlons as simple as possible_ The electric

field can be expressed as follows:

(3c, 1 °6)

J_'_o '2-E'2)(k _÷ k 2) _ K_K (k2+ k 2 + 2 k 2 k ,_
_B_ ( ' ;_ °_ _ _ _ 3 + K' (k2+k2+2k 2) "J

z
_ 1 2 3 zK k K _ i

J
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The expression can be simplified by a transformation to cylindrical

coordinates :

k = y COSO , k2 + k 2 = yZ ,
1 I 2

= _2 _ + k2k %/ sin_ , = .
2 3

(3.1.7)

Thus the electric field expression becomes

"_B=- J°'_J'o k2 2
Z ,2 + KO 3

+ .... K,,2 .y2 k 23 ) 'j

(3.1.8)

For a triangular current "_-'_'_"" 4_,u_ ..... t_n_ J is given by
z

z

jk L
3

9. - e -e

L

L ; ( k3u_ k3u)-Jk3 = (1- _)u + e du (3.1.9)

k 2 L
3 o
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The el,ec[rlc fleld in space may be found by taking the Fourier transform

of Equation (3,_I_8)0 For convenience k is written in place of k: o
3

EB_-III Be,kzz (2_)2 z

oO O

J (_) y dy dk
o

(3oloZO)

(2_) 2 ] _ . : (p,z (3olo11)

where

ooooL

fff ej ku -rj ku
u + e

l _ (p,z') ='. (I- [) (K _Y2+ K k 2)2
0

-,,,o00 0

eJkZj (_p) 3 du d_ dk
0

(3°lo12)

and

oo _ L

Ill uV'(p,_) : _o (1- E)

•-o0 0 0

k2 eJkU -jku+ e

2

[K k24 K'y 2}
O

(3° l o13)

eJkZJo(_P)_du dy dk
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Introducing the anisOtropy factor aZ = K'/Ko, one may write the above

two integrals as follows:

n _ oo

0

eJk(z+u) (z-g) y3+ ejk Jo(yp) dk dy du

(kz + a2y2)2

(3.1.14)

=] , oO: eJk(z+u) + eJk(z_u)
k2 o j (yp) 3 dk d F du

I" (/D, z) (1-1_- k2+y'---"2 (k _, + a 2 y2 )2 o

O ' 0 -o0 -

(3.1.15)

Integration with respect to k '(using contour integration) gives

(3.1.16)

1, _ _ u + ay[ z- Jo (yp) <dy_duI (p, z) 11" (i- _) ay(z+u e-aY(z+u) e-aYl z-u
2a a

O O
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a2-1 _) + a_(z+u + La2-_ +ayI z-u e -aYtz-

o

e e-_I z-u_l

_ _ -_<z+u) +,

a2 -I
Jo(_{_) d_ du (3olo17)

Rearrangzng the terms gives

u -a_(z+u)

o

4 e -aYi z-u I

(3ozoz8)

Jo(_O) d_ du

I':V(.D, .) _.
f u. + 1 -ay (z+u) -ay_t z-u

(i- _) +e

2(a 2-1) o o __ L'a (a2-1)

a2 .]
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A_ter integration with respect to y,

(3.1.20)

i, ¢o,..) : ':--_- ( l _)
2a 2 a- 8a (i- L pz+ a2 (z+u)2 "/92...... du

z" (p, z) - -_- (z- L ) _ -

2 (a 2 -l) o _ _:(a2"l )

2+a2 (z+iI) 2

2 i +

a 2-1 p2+ (z+u)2 _p2+ (z-u)2

du (3,1.21)

Recall that EBQo, z) is given by
z

EzB(pmz) : -J_ [a4 I'(p,z) + b4 I" (p,z)_ '
(2_)_-_

(3.1.22)

where

2 K' b2 K"a = -- and = --
K K
o o
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The corresponding contribution to the impedance of a short monopole is

L

f (z-_ ) _0_z) dz

o

(301023)

(2r.)2 2 l L ,
o o p2+aZ (z_u)2 2+a_-(z-u)

-c s (1- _) (1- _) ÷ du 4=
p2÷( u)' _p2(z'u)2/

(30 lo 24)

04 (a 2 +1) C a2 b4 2b4
where C = a+ _ = + _ _ C = _===== o

a(a2 1)Z 2 a2=l 3 (E(2=1)2

Note that the Integrands are symmetric in u and Zo Thus the impedance may

be expressed as
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zB =_ ., -% (_--_) c_--5 - + :i.in (2f)2 i L ,, 1 du dz

i i r ,]z _.u) 1_ +•,I. c (z-_) (z- L

' o o P2+(z+u)2 P2+(z-u)2

du dz

Integration with respect to u gives

I(_, '] -ZBin =_ - _a) _ (1- _) L -_- + z
C2 z _ sinh I 2az Isinh-1_ - 9.

aZ1

2 • z2
dz

L

-C 1 I

0

z r .', -12m

(i- £) _ s_._
+ z

s" "-12z -IZ I

!
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8

Now one can integrate with respect to z_ take the de_ivative _ and

make the approx_ation L >> _a_o Thus_

zB
in C ,. c--'_.:- _co ,o

=!__ _.+ __ = cs
4_" a 2

in

L IT_) (_ C2)in,a+ 1 C_ C11
+ ln2- + + a2 _3 --3 = (3olo27)

With the help of the relation K_2 = (K_-K )(K _-i}_ it may be shown that
o

C (K'-i) (K_+K ) C
K _-I 2 (K_-i)

-JL = 1 + o _5_ = 1 + _ C ="
K_ _ K'

a Kv (KV=K } a2 3 -K 0
o

(3ol.2s)

from which

C C C C C

_i + _2_2- Cs = 2_ ,_L _ C3 = _I _L + __
a a a _ _ a a2

i K'-I )= _ + _,_----F o
o

(3olo29)
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Now the monopole impedance correction can be expressed as

z_
in

j_O_L 1 L 17

:2"_ _ln_+ln2-_+
K'-I I in:a _V 1

+ K' -'---K "_+
o

(3.1.30)

The quasi-static calculation gave

A 1
Z =
in

2_j_ LK'
o

EL _]n_- 1 + in
(3.1.31)

Combining these,

A Z BZ =Z. +
in zn in

L L[Ln _- 1 + in a_- (2.12 _ In _ - :251

+ (3.1.32)

where k is the free-space wavelength.
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L

When K9_ a_ Ko are of the order of unity the In _ terms domlnateo

Under these conditions, the quasi-static expression is accurate as long as

•would be expectedo

However at cyclotron resonance K' and _a" become very large_ increasing

the magnitude of ZB compared to ZA Thus the quasl-static theory breaks
in in':

down at cyclotron resonance unless the magnitudes of K_ and "a" are kept low

by collislonal damping° As an example_ consider the experimental monopole

for which L = o04k at I_6 kmco At Y_= i (cyclotron resonance)_ X = i and

Z = .05, the magnitude of the c_r_'ection te_m is 20% of the quasi_statlc

impedance magnitude°

It is important to notice that the fo_m of ZB is almost identical to
in

A
that of Zln _ showing that the correction term does not introduce any

markedly different kind of impedance, behaviour°

3..2 The Effect of Plasma Waves on Impedance

A given current distribution in a uniform, isotropic plasma generates

both transverse electromagnet_:C waves and longitudinal plasma waves° Coupling

between the two wave types occurs only in the presence of inhomogenelty or

anlsotropy and such coupling will not be considered here° The problem to.be

considered is that of a short, tbln_ cylindrical dipole with a triangular

current distribution as shown in Figure 3o2olo Since the electromagnetic and

plasma fields are generated :independently by a given current distribution

(see Cohen_13Part I)_ their impedance contributions may be computed separately

and added°
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Figure 3.2.1 The source distribution
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The electromagnetic problem has many well_kno_m solutions but the

plasma wave problem has received little attention° Hessel and Shmoys _9

have discussed the field problems of an infinitesimal dipole and a current

distribution on a sphere° Whale 4 has calculated the radiation resistance

of a short dipole and compared his calculations with the results of rocket

experiments° Cohen I$ has discussed source problems in warm plasmas and

has included a calculation of dipole radiation resistance° In the following

paragraphs an impedance formula is derived for a cylindrical dipole; the

formula is valid for a lossy medium and for any electron density°

The required differential equation can be obtained easily from the

paper by Cohen_3(Part I)o If a time variation ej_t is assumed and if a

collision frequency u is introduced_ Cohen_s force Equation (206) 3ecomes

j_ _m I_-T
total

where V = _m T

= - Ne Etotal - m V2_ n
(3o2ol)

y=3

k = Boltzmann constant

T = electron temperature

m = electron mass

N = average electron density

n = variation in electron density

e = magnitude of electron charge

v

U = 1 - JZ = 1 = j

v = electron velocityo

(3oZoS)
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Cohen's field equations can be derived for a lossy medium using the above

force equation. Three of the lossy medium equations (equivalent to Cohen's

Equatlons(3.10),(3.12) and (3.21) together with the continuity equation can

be used to derive a differential equation for the plasma wave electric field

due to a source current 7.0

U-X w

x-

$-K

• vv. JK
0 - 0

(3.2.3)

where

v2
A -- m

N
X-

J

_o 2 Ne2
N mC

o

X
K = 1 ---
o U

In order to carry out field and impedance calculations it is necessary

to assume some current distribution _. At 300°K, plasma waves have a very

short wavelength (about one centimeter at ten megacycles). Since the wave-

length may be comparable to a typical antenna radius, it is necessary to

assume a cylindrical current distribution rather than a filamentary distri-

bution. For a z-directed current cylinder of radius p, the differential
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equation for E is
z

' 1 - K 82J

V 2 E - a2 E = =-------_ 1 z 8(r-p) (3°2°4)

z z K ja_ _z 2 2_po o

where

a2 = - U-X
A

The longitudinal current distribution J is assumed to be triangular° The
z

second derivative of a triangular current distribution is equivalent to

the sum of three delta functions as shown in Figure 3o2olo

The differential equation now can be expressed as

I-K
o 1

_j2 E - a2E
z z K

o j_e °L
6(z-L) + 5(z÷L) - 28(z)1 _ (3o2o5)2_p

The above equation can be solved using the transform pair

oo eo

.oo o

f(r_z) e-jkz J (Nr) dr dz
o

(3,2o6)
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oo oo

lf (r, z) =

-oo o

(N,k) ejkz Jo(Nr) N.d_ dk (3.2.7)

Transformation of the differential equation gives

_ = ejkL_
(k2 + _{2 + Ct2) _ jc_6 K L + J _ "' (3"9"'8)

z 0 O

Now E can be expressed as an inverse transform.
z

K,_--i

o

Ez(rZ) = j_E K L
o o

(3.2.9)

1 f] [e-jkL+ eJkL-2-_ jo(,p, eJkZj (,r)_ d_ dk
: (2_) 2 k2+_ + ct2 o

-0o o

If it is assumed that_ .y2+ a2

with respect to k gives

always has a positive real part_ integration

Zz(r, z)=

(3.2.10)

o ce +e -2_ Jo(_p) Jo(_r)_ d_

j_4_C K Lo o , _+ _2
o
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If one's interest is confined to impedance, one need calculate the field

only at the antenna surface; that is at r = Po With the substitution

J (2yp eose) de, (3o2011)
0

the field expression becomes

E (p,z) -
Z K-1o 9. f/ -I _ 4a_2 ' z'L' -I_/_ +°'2 (z+L) -_ _+o'2e +e -2eJc04_/E K L

0 0

J (2_ pcos8) _ dy de <3oSo12)
0

If It is assumed that o always has a positive real part, the integration with

respect to y can be carried out (it is a form of "Sommerfeld's integral"),

Ez(p,z)=

K m 1

0

jo_4_'6oKo L

2 e-Ct_(z-L)_+(2pc°s892 e-Ct_ (z+L)24 (2pc°sO)2

3

-2 e _ z2+ (2pcosO)21 de

_z2+ (2pcose) 2 "J

I

(3 _2o13)
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Integration with respect to 8 will be delayed in order to simplify the

impedance calculation.

The dipole impedance contribution due to the longitudinal plasma

oscillations is twice thetmonopole impedance contribution. The latter

may be expressed as

Z P= -f
in

z

(i- _) E z_O,z) dz

In order to express the impedance in terms of simple functions, use is made

of the approximation L2>> p2. Integration with respect to z gives

in = joJ2_£oKoL " _ J h2_L e -e

-3e

+ K (2apcosS) - 2E (eL) + E (2eL) _ de (3.2.14)
o 1 I 3

where E
1

is one of the exponential integrals;

oo

_u
e

E (eL) -- -- du.
1 u

L

(3.2.15)
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In the derivation of Equation (3o2014) the following integral expression

for the function K has been used:
o

oo

I e_<l u

-_- duo

Ko(aq) = _ u 2_q2
q

(so 2016)

Here it should be mentioned that the assumption of a current filament

instead of a current cylinder would give the above impedance expression

with the exceptions that there would be no e integration and that 2 cose

would be replaced by unity,

Integration with respect to e Rives

P IiZin- J_2_'_ K"L o(ap) Ko(a p) - 2E (GL) + E (2aL,)
O O _"

+ _ e -e -3Io(2ap) ,_.
(3o2o17)

where L is a modlfied Struve function° In p_'actical cases aL is quite
o

large but a,p may be fairly small_ When a,p is small the term containing

K (ap) is domlnant and it approaches infinity as ap approaches zero° The
o

large argument approximations for I and K are still useful when the
o o

argument is near unity and they give the very simple approximate result
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p K-lo I___p_
Zin = J_2_E K L

oo

(3.2.18)

Combining this with the quasi-static analysis gives

1 ll L (K -1)}oZin- j0_2_6 K L n_- 1 + 2ap

o o

(3.2.19)

From the above impedance formula_ it is clear that plasma waves

affect the impedance of a short monopole appreciably when apo is approxi-

mately equal to unity. Taking T = 300bK, we find that V = 1.168._x_105 m/sec.

In a lossless plasma

(i= _-
(3.2.20)

• = 1.07 when X = 1.25_ f = 4 Mc. and Pn = 1 cm.To take an example, 040 o

Since these parameter values are representative for the maximum electron

density in the F region of the ionosphere_ it is clear that plasma

oscillations cannot be ignored in impedance probe studies using rockets or

satellites° In the laboratory experiment_ however_ the corresponding value

of ap would be of the order of 20. Thus it is unlikely that plasma

s

oscillations would have a measurable effect on the impedance 6f the experl-

mental monopole.
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The above impedanceformulation is quite genera] but is most convenient

when the frequency is lower' than %heplasma fz'equency_that is when_ is

real (in the lossless ease)° For frequencie_ above the plasma frequency,

is imaginary so one can write j_ in place of _ taking care %oensure that

a small loss in the mediumgives j_ a positlve real par%o Nowthe input

impedancecontTibutlon due to plasma osclllat2ons can be written as

P o 2 ] -J_L _j2_L -j2_pcos

Zin '- j_2ffe K L _ _ e -e -3e
O O

O

(3 o2o21)

Where the foll.o_ing formulas have been u_ed:

- _ No(':#) =
_u2_-q _ _q_

q q

c_(a_) =f cO_Uu d%

a

oo

(3°2°22)
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Integration with respect to e gives

K-I
P o

Z
in - j_02_ K L

o o

+_i(2_L) + j si(2_L)_ + j2_---_ e -j_L -e -j2_L -3 Jo(2_p) + 3j _o(_8 .23)

where H is a S_iruve_ function.
--o

For the case of a lossless medium, it is helpful to break up the

impedance into its real and imaginary parts.

P
Re Z

in

I-K

- _2_E K L
oo I_ _o (_P) 2 si(_L) - si(2_L)

+

÷_--£ _
(3.2.24)

P
Im Z

in

I-K
o

- or2a'E K L
o o -_ ao(_p) No(_p) - 2Ci(_L) + Ci(2_L)

+ 2-_ 4 sin_L + sln2_L + 3 Ho(2_p (3.2.25)

P
It should be noted that Re Z.

in
is the radiation resistance associated

with the radiation of plasma waves from the antenna.
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In most cases of interest _p is fairly s_,all while _L is quite large,

the terms containing _o _P) and J (_p) dominant in the above twomaking
o

formulas° If _p is no smaller than unit:y_ the Bessel functions can be

replaced by their large argument approximationso Thus

p I-K ."
o _ (3.2o26)Re Zln = _2gE K L _p
o o

1.-K

P o cos2 _Sp (3o2o27)
Im Zin = _21/_ K L 2_p

o o

Combining the above wlth 'the quasi-stati, c impedance, one obtains the

approximate formula

i L K-lo " ( '

Zin- J_21/e K L n _ - 1 + ,_ os2 _p .-j (l_si,n,_, _p
0 0 ".

(3°2028)

The preceding discussion of Impedance is based on the assumption of a

triangular, current distrlbutlon on an antenna which ls _hort compared to a

free space wavelength_ This assumption may break down_ however'., at the

plasma frequency under near-lossless cond]tionso Furthermore; at high

frequencies Landau damping may affect: the Impedanceo
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3.3 The Effect of a Non-Uniform Electron Densit_

The introduction of some surface or boundary into a plasma results

in the diffusive flow of the charged particles toward the surface. Close

to the surface, free diffusion predominates and an ion sheath forms.

Farther away, ambipolar diffusion predominates; the electron and ion densities

are nearly equal but both decrease as the point of observation approaches

the surface. Since the theory in this rgport assumes a uniform medium

with no space charge, experimental verification of the theory must depend

on minimizing diffusion and on understanding its effect on antenna impedance.

The effect of non-uniform electron density on impedance can be estimated

by calculating the impedance per unit area between two parallel conducting

plates separated by unit distance. The space between the plates contains

isotropic plasma having an electron density distribution as shown in

Figure 3.3olo The input impedance per unit area is given by

1 flZin = J_E Ko[Y)
o

o

d_ (3.3.1)

d_ where U = 1 - JZ (

d_ +
U - X°
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Figure 3.3.1 The assumed electron density distribution

between two parallel conducting plates
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U-aX
U u, _.o i,-.8

= J_o i ) Xo in U- Xo + O-X
(3.3.2)

The results of some numerical calculations using Equation (3.3.2)

are shown in Figures 3°3.2 and 30303o The impedances are normalized to

give a free space reactance of 5 ohms° An examination of all the curves

(especially curve E) reveals that the losses in the plasma are increased

considerably whenever some part of the medium is in plasma resonance.

Note that curves C and F are nearly identical despite the ratio of two

between their respective collision frequencies; apparently under such

circumstances the electron density distribution has a greater influence

on energy loss than the collision frequency. Furthermore it is evident

that the effects on non-uniformity cannot be calculated from a density

distribution made up of finite V'steps_'; only a continuous distribution

will give the enhanced energy loss discussed above.

Curve E of Figure So3oS exhibits an indentation for I<X <08.'-The
o

similarity of this indentation to the kinks in the theoretical curves of

Section 4.2 (at low values of y2) suggests that it may be difficult in

practice to distinguish between the effects of non-uniformity and the

effects of anlsotropy. However, it is estimated that the conditions of

curve F may be closer to the experimental conditions thanthose of curve:;:E.

This conclusion arises from the estimate that in the vicinity of the R.F.

probe the average electron density is about four times the minimum density

(see Section 4ol). Thus the ratio: of maximum to minimum electron density
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o 1

A

Figure 3.3.3

0.1 I

8

d
0 .5 I 0 I

C D

The impedance of a non-unlform, isotropic plasma between

parallel plates as a function of peak electron density.

Collision parameter: Z=.IO
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Figure 3.3.3 The impedance of a non-uniformj isotroplc plasma between

parallel plates as a function of peak electrondenslty.

Cc,_!is_oa parameter: Z=.O5
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maybe as high as eight° Under such conditions the impedance curve would

have a very gradual indentation and would be similar to curve Fo A further

point is this_ the experimentally observed kinks first appear for y2_ °50°

For °50 _ Y_9 oi0 the experimental curves are fairly smooth° For oi0 _ ¥2>10

some indentation was observed and presumably it was caused by non-unlformity.

It is therefore suggested that non-uniformity in the experimental results

of Section 4°2 is more likely to move the entire impedance locus toward

the real axis than to cause local distortions which may be confused with

anlsotroplc effects°

The ion sheath over a conducting surface is a type of non-unlformity

which can be expanded or collapsed by the application of bias with respect

to a reference electrode° When the sheath is collapsed, the plasma is

essentially uniform in the region adjacent to the surface° Bias controls

the sheath thickness by influencing the state of equilibrium between the

electron and ion currents flowing to the surface° Consequently the surface

under consideration (and also the reference electrode) must not be covered

with an insulating layer° Since a state of sheath collapse is easy to

achieve, it is not necessary to discuss the theory of sheath formation

furthe_ in this report°

In a decaying, inactive laboratory plasma, the electron density

distribution at time t. is a function of the deionlzatlon processes for all

time before t (going back to to, the time when the discharge was initiated)°1

The two principal deionlzation processes are volume recombination and

diffusion to surfaces° Recombination, being a volume process, tends to make

the electron density uniform but diffusion has the opposite tendency° The
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experlmental plasma (see Chapter 4) is initiated at t by a 2_s DC pulse.
o

In the first 50 to 100_s. diffusion is dominant due to the high electron

temperature. There follows a period of dominant recombination resulting

from the existence of high electron and ion densities. As these densities

decrease 3 diffusion again takes over. From the foregoing discussion it is

clear that the electron density distribution around the experimental antenna

will be a very complicated function of all the events in the plasma between

t and t .
o 1

Measurementof the electron density distribution is dlfficult because

any probe system disturbs the plasma around it. Because of such difficulties

in measurement the best approach to the non-unlformlty problem is to try

to minimize diffusion. This can be accomplished by choosing a gas wlth a

high recombination coefficient and a low diffusion coefficient (such as

neon)j and by using it at as high a pressure as possibleo Although the

choice of gas is important_ the introduction of a magnetic field parallel

to the diffusing surface is probably the best way to reduce diffusion_

provided that the experiment can be carried out in the presence of the

magnetic field .... " " '. _" _:, _ " ' "
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4o LABORATORY MEASUREMENT OF MONOPOLE IMPEDANCE

4.1 Experimental Apparatus and Measurement Technique

The apparatus is designed to produce a pulsed DC discharge in neon

or helium at a pressure of 1 to i0 mmo Hg0 The experiments are carried

out during the plasm a decay period (afterglow) following each discharge

pulse. The "resonance probe "20 method is used to measure electron density

and slotted-line techniques are used to measure the impedance of the

monopole RF probe immersed in the plasma°

Figure 4oI_i is a schematic drawing of the vacuum system° Pump-down

procedure consists of pumping first to about 20 microns (2 x lO-2mm) with

the mechanical pump and then pumping to about 10-6mm with the diffusion

pump. This procedure may, take from a few hours to a few days depending on

the amount of contamination in the system° The application of a spark

Icoil to the glass parts of the system speeds up the outgassing of he

glass surfaces° Pump-down is followed by seallng of the system and back-

filllng with the required pressure of neon or helium° Operation of the

discharge for a few hours completes the decontamination of the discharge

tube interior. After the pump-down and back-fill procedures have been

carried out again 3 the equipment is ready for impedance measurement

experiments°

Figure 4ol.2 is a diagram of the pulse and RF system used in the experi-

mento The continuous discharge at the cathode end of the discharge tube

assures dependable starting of the pulsed high-voltage discharge. The 2_So

discharge pulse is followed by the plasma decay which lasts for several
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Figure 4.1.i The vacuum system
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milliseconds_ In this experiment the first one or two milliseconds of

the decay are displayed on the oscilloscopeo

Figures 4ol.3 and 4olo4 show the details of the discharge tube and

RF probe assembly. The coaxial llne up to the RF probe is designed to

minimize reflections. Both the RF probe (monopole antenna) and a flush

probe (not shown but mounted flush with the surface of the brass end

cap adjacent to the RF probe) are used as resonance probes to measure

electron density° The electron density given by the monopole resonance

probe measurement is an aveEage density for the immediate vicinity of

the monopole; the electron density given by the flush resonance probe

has a much lower value and indicates the deEree of plasma non-uniformity

resulting from diffusion to the brass end cap. In a typical experiment

the electron density adjacent to the end cap was found to be one-quarter

the average electron density along the RF probe.

The method of impedance measurement is illustrated in Figure 4.1.5.

1

The slotted line probe is positioned at four points spaced _ wavelength

alon E the line. At each position a photograph of probe voltage vs. time

is taken. Measurements taken from the photographs are used to plot the

impedance as indicated° This method is usually referred to as the "four

probe" method and is discussed in detail in the book by Ginzton 21 (page 310).

A typical set of probe voltage photographs is shown in Figure 4.1.6a

and Figure 4olo6b. The experimental conditions are as follows: '
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Figure 4.1.5 Method of plotting an impedance locus using a
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y2 0 y2:.90

2 2
Y =.50 Y = .95

2 2
Y =.75 Y =1,00

Flgure 4.1.6a Slotted l£ne voltage as a function o_

time. (Neon at 4.3 nun, pressure. Time

scale: 3RO _s/¢_.)
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2 2
Y :1,05 Y :1,50

2 2
Y = 1.10 Y = 2,00

2 RESONANCE PROBE

Y = 1.25 CURRENT

Figure 4.1.6b Slotted line voltage as a function of time.

(Neon at 4.3 mm. pressure. Time scale: 320 _s/cm.)
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Gas: Neon

,
Pressure: 4°3 mm0 Hg0

Frequency: 1o6 Gco

Bias: 18 volts

,
Oscilloscope horizontal scale: 320_s0/Cmo

Oscilloscope vertical scale: 2 mv0/cm0

Probe dimensions: L = 8.0 mm., L/p = 12.0

The cDrresponding impedance loci are shown in Figure 4.2.5° The _dis-_;;

charge pulse in each photograph is at a point one centimeter from the left

side of the photograph° In the first 200 _s. after the discharge pulse the

traces are irregular; thus the impedance _oci of Figure 4.2°5 begin approxi-

mately 250_m. after the discharge pulse° A photograph of resonance probe

current at zero magnetic field (y2 = O) is included in Figure 4.1o6b.

It is important to estimate the leak rate of the vacuum system in

order to determine the optimum period for experimentation. At a pressure

of 2 to l0 mm, small changes in pressure'cannot be measured accurately with

the equipment of Figure 40101. Thus it is n_cessary to measure the low

pressure leak rate with the ionization gauge and assume that the leak rate

is not appreciably different at a pressure of a few millimeters° Figure 4.1.7

is a graph of pressure vs0 time as measured using the ionization gauge° As

shown on the graph# there is a period of about one hour after pump down during

which leakage contamination is negligible°

Only these conditions are varied in the experiments°
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4.2 Comparison of Experimental and Theoretical Impedance

The monopole impedance measurements to be described were carried

out in neon and helium gases° Some properties of these gases (at 300°K,

1 mm pressure) are summarized in the following table (CGS units):

Gas

Neon

Helium

Electron-molecule

Collision probability

P
c

3o3

19

Recombination

coefficient

G

2.1 x 10 -7

-8
1o7 x i0

Ambipolar

Diffusion

Coefficient

D
a

115

540

The values of a and D are as given by Goldsteln 22 and the values of P
a c

are as given by Brown_ 3 The table indicates that neon is preferable to

helium because neon has a lower diffusion coefficient and a higher recombi-

nation coefficient° This means that a neon afterglow has a greater tendency

to decay by recombination instead of diffusion. Since recombination is a

volume process and diffusion a surface process, afterglow decay by recombl-

nation tends to produce a uniform plasmao In addition, neon's lower value

of P indicates that it may be used at higher pressure (for the same
c

collision frequency) thus reducing contaminatlonproblems.

In some of the experiments a mixture of neon plus 0o5_ argon is used.

At 300°K the argon contributes negligibly to the collision frequency.
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However the electron-molecule collision probability of argon rises sharply

at higher temperatures (the RamsauS_ effect). Thus the argon tends to

increase the cooling rate for the electrons in the first 50 to 100_s after

the discharge pulse° The presence of the argon should reduce the tendency

of neon metastable excited states to maintain the electron temperature

above 300°Ko

The time required for the attainment of electron thermal equilibrium

is of major importance and has been studied by Dougal and Gold_teino 24 For

neon and helium at pressures between .5 and 5 mmo, this time constant t e

is given by the following formulas:

150

Neon: te_< T + 90 _So for p = 5 mm. te_ 120 _s0

Helium: t _ 8.4 lmm0 t _ 36 _s.e T + 26 _s. for p = e

Thus it should be possible to begin impedance measurements after the time te o

The theoretical calculations require an estimate of the collision fre-

quency v which is given by the sum of the electron-molecule collislon fre-

quency and the electron, ion collision frequency. That is,

V = V + V
em ei
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v

Similarly_ the relative collision parameter Z = _ is given by

Z= Z + Z
em ei

The appropriate collision frequencies are as follows (as given by Dougal

and Goldstein 24 and discussed by Pfister25):

4 m

v =- v P p (MKS units)
em 3 c o

3o62 x l0 B N_
1

Vei 3/2
T
e

in

3.30Ni1/2x 106 Te3/2 1

in which
=_ 8kT

e

v _m

= average velocity of eiect_ons with Maxwe!!ian distribution

273 o

Po - T P = pressure reduced to 0 C

N. = ion density
1

For a fixed frequency of 1.6 Gc°_ the electron=ion collision parameter

may be approximated by the following simple function of X, the electron

density parameter:

Z = 0010 X
ei
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The electron-molecule collision parameter values are summarized in the

following table:

Z
Gas Pressure em

Neon 2°3 mm. .010

Neon 4.3 mm. .019

Neon 10o3 mm. °044

Helium 2.2 mmo °055

The theoretical and experimental results are shown as Smith chart

impedance graphs in Figures 4o2.1 to 4o2012. The theoretical graphs

indicate that an increasing magnetic field sweeps the impedance locus

from the top of the Smith chart nearly to the bottom° This effect ls

reduced by increasing the pressure° Increased pressure also tends to

move the loci to the right.

A prominent feature of each theoretical locus is the presence of a

"kink" in the vicinity of X = i (plasma resonance)_ This kink arises from

the logarithm in the impedance formula and is thus related to the elliptic/

hyperbolic feature of the quasi-static theory. The point X = 1 is always

on the boundary between an elliptic and a hyperbolic region (see Figure

2.1.1). Increasing the pressure_ tends to smooth out the kinks in the

impedance loci. In addition, the point X = 1 is seen to follow a nearly
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\
\
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\

Figure 4.2.1 Theoretical impedance loci for neon at 2.3 mm. pressure
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\ /

Figure 4.2.2 Experimental Imped_-oeloci for neon at

2.2 mE. pressure
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\

Figure 4.2.3 Experimental impedance locl for neon (0.5_ argon)

at 2.0 mm. pressure
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Figure 4.2.4 Theoretical impedance locl for neon at

4.3 mm. pressure
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\

\

\

Figure 4.2.5 Experimental impedance loci for neon at

4.3 mm. pressure
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Figure 4.2.6 Experimental impedance loci for neon (0.5_ argon)

at 4.2 mm. pressure
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\

Figure 4.2.7 Experimental impedance loci for neon (0.5_ argon_

0.03_ air) at 4.3 mm. pressure
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Figure 4.2.8 Experimental impedance locl for neon (0.5_ argon,

0.15_ air) at 4.3 mm. pressure
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\

Figure 4.2.9 Theoretical impedance loci for neon at 10.3 mm.

pressure
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Figure 4.2.10 Experimental impedance loci for neon (0.5_ argon)

at 10.3 nun. pressure
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Figure 4.2.11 Theoretical impedance loci for helium at 2.2 mm.

pressure
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F£gure 4.2.12 Experlmental £mpedance 1oci for helium at 2.2 nun.

pressure
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circular path as the DC magnetic field changes°

It Should be noted that the line X + _ = 1 is also an elliptic-

hyperbolic boundary for X _l, Y2_l (Refer to Figure 2olol). The points

X = 1 - y2" are not marked on the theoretical impedance loci but they are

close to the real axis for small values of y2 and are all capacitive The

Smith chart graphs reveal no unuBual behaviour at X = 1 - _2o

In general there is good qualitative agreement between experiment and

theory° The movement of the impedance loci from the top of the Smith

chart to the bottom with increasing magnetic field is evident in every

experiment. Movement of the loci to the right and toward the real axis

with increasing collision _requency also is evident° In all cases

(theoretical and experimental) the cyclotron resonance locus (y2 = i) meets

the rim of the Smith chart at right angles.

In each experiment_ the points X = 1 follow an approximately circular

path° Since these points were determined at zero magentic field and since

an increasing magnetic field tends to increase the time required for after-

glow decay_ the points X = 1 are in error for y2_ Oo Furthermore the

_nc ...... increase_v Thus the true plasma,,_a_ _u_ of *_ error

resonance points are somewhat to the right of the indicated points and

the necessary correction increases with increasing magnetic field.

In Section 3.3 it was found that a non-uniform electron density tends

to move the impedance locus for y2 = 0 away from the rim of theSmith

chart and toward the real axis° Such an effect is evident in every experi-

mental Smith chart at low values of y2 o Agreement with the theory.is some-

what better at high values of y2 presumably because the magnetic field



tends to reduce diffusion to the probe surface (transverse diffusion)° A

reduction in diffusion renders the plasma more uniform and uniformity is

assumed in the theory.

The kinks at X = 1 are visible in many of the experimental locio

i

At high magnetic fields, the kinks are to the right of the plasma

resonance points obtained at zero magnetic field° As discussed above_

this is probably caused by the extended decay period of a plasma in a

magnetic field. The theory predlC_s a smoothing out of the kinks as gas

pressure is increased and this effect is noticeable if Figure 4°2°2 is

compared with Figure 4.2°5. However_ a non-uniform plasma density also

would tend to smooth out the kinks and the degree of uniformity depends

on the plasma decay processes which in turn are pressure-dependent. Thus

it is very difficult to identify the cause of a smoothing effect in the

impedance loci when the gas pressure is changed.

The addition of a small quantity of Argon (to increase the rate at

which the electrons approach thermal equilibrium) apparently has little

effect. This can be seen by comparing Figure 4.2.3 with Figure 4.2o2 and

Figure 4.2°6 with Figure 4.2.5.

In contrast to the case of argon, the addition of a very small

amount of air has a pronounced effect on the impedance loci (see Figures

4.2.7 and 4.2.8). The effect of the addition of air is to bring the

experimental results into much closer agreement with the theory, expecially

in the regions of the plasma resonance kinks. The air percentages indicated

on the graphs are rough approximations obtained by extrapolating the

leakage graph of 6igure 4.1.7 to 5 hours (.03% air at 4°3 mm) and to
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25 hours(015_ air at 403 mm)o It. is suggested that the addition of air

tends to cause the predominance of volume processes (recombination_

attachment) in the afterglow decay° This should produce a more uniform

plasma and hence better agreement between theory and experiment° The

argument for additional decay processes is supported by the fact that the

addition of air shortens the overall decay period by a factor ranging

from 1/5 to i/i0o Most of this shortening is in the early part of the

afterglow when the electron density is high° Since the reepmbins%i0n decay

rate is proportional to the square of electron density, the early after-

glow shortening is a further argument for the addition of volume decay

processes°

The impedance loci for helium (Figure 4o2o12) exhibit no kinks at

allo In contrast the experiment in neon at 10o3 mm (Figure 4o2.10)

displays kinks which are definite although considerably smoothed in

comparison with the theory (Figure 4°2°9)° The two cases compared have

similar collision frequencies as is shown in the collision frequency table

given earlier in this section° This tends to confirm the earlier assertion

that neon is preferable to helium in an experiment of this type°



5. CONCI_U__0_

_5_

A formulation for electromagnetic theory in a magnetoplasma is_

obtained. This formulation is in terms of a scalar potential and a vector

potential. A modified Coulomb gauge condition is selected, the choice

being made so that the quasi-static electric field is displayed as a

distinct part of the total electric field. The total electric field is

expanded in such a manner as to facilitate making a low frequency approxi-

mation (the expansion is similar to the expansions used by Mittra and

Deschamps I and also.Kogelnik26). In the low frequency approximation, it

is shown that only the quasi-static electric field remains° Furthermore

in the low frequency approximation, part of the magnetic field is shown toy

arise from currents induced in the m'a_.ne%1)1_lasma by the quasi-static

electric field. This induced magnetic field is not present in isotropic

media.

The quasi-static electric field of a short dipole antenna is calculated

and in the lossless case the field is found to contain conical discontinuities

emanating from the ends and center of the dipole. These discontinuities occur

only when the quasi-statlc differential equation is hyperbolic and they lie

along members of the family of characteristic surfaces of the differential

equation.

The quasi-static electric field is used to obtain an expression for the

input impedance of the dipole for any orientation with respect to the DC

magnetic field. Under lossless, hyperbolic conditions it is found that the

input impedance has a positive real part. Integration _ the Poynting vector

over a surface surrounding the dipole indicates that real outward power flow
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is present and that it arises from the induced magnetic field mentioned

above° It is concluded that the quasi-static theory predicts a form of

radiation from a short dipole in a magn_top!asma0 o

The results summarized above .are based on the assumption that the

current distribution is triangular and that a filamentary current is an

adequate representation of the dipole current for electric field calcu-

lationso The influence of this assumption is estimated by carrying out

impedance calculations for two different current distributions° The

first distribution is triangular but the current is assumed to be spread

over the cylindrical surface of the dipole° The second distribution is

fil:amentary and such that the slope of the current iszeZo_..a_..._h_en_ ................

of the dipole and at the center° These two assumed currents give

impedances which are essentially identical to the impedance as originally

derived°

The quasi-static differential equation can be reduced to Poisson's

equation by a simple dimensional scaling° It is shown that a cylindrical

dipole in a :magn_toplasma has a free space equivalent with a different

i_+_ o_ _ di_t_rted cross section° Furthermore, it is shown that the

scaling principle can be used to derive the dipole impedance formula°

A first order correction to the quasi-static impedance theory is

computed° The correction is found to be small in many cases of interest,

including the laboratory experiment used to test the theory.

The generation of longitudinal plasma waves is considered but only for

the isotropic case° Plasma waves are found to affect impedance appreciably

only in the vicinity of plasma resonanceo In the laboratory plasma, the
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collision frequency is high enough to mask completely any impedance

effect due to plasma wave generation°

The effect of a non-unlform electron density is considered by calcu-

lating the impedance of a non-uniform, isotropic plasma between parallel

plane electrodes. Non-uniformity is found to have little effect as long

as no part of the plasma is in a state of plasma resonance. If some

region is in resonance, the effect on impedance is similar to the effect

of increasing the collision frequency.

A series of experiments is described in which impedance measurements

are made on a cylindrical probe immersed in a pulsed, decaying plasma° A

DC magnetic field permeates the plasma and is parallel to the dipole

axis. The electron density in the vicinity of the probe is measured using

the "Resonance Probe" technique° Good qualitative agreement between

measured and theoretical impedance is obtained. Quantitative agreement is

only fair, probably because the plasma is quite non-uniformo In some of

the experiments, a small amount of air was allowed to mix with the neon

(neon was used in almost all of the experiments)° Addition of the air

resulted in greatly improved agreement between theory and experiment° It

is suggested that the presence of air enhanced volume decay processes in

the discharge afterglow and thus prpduced a more uniform plasma°
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APPENDIX

THE MODIFIED COULOMB GAUGE CONDITION

The gauge condition used in Section 2ol is

_ o KA= 0 (A. i)

This will be referred to as the modified Coulomb gauge condition because of

its similarity to the Coulomb gauge condition

D

_7 • A = 0 (A.2)

which is mentioned in various texts. :_ . .... :

In general, a particular gauge condition is chosen in order to simplify

some aspect of electromagnetic theory. It is necessary to show that the

choice of gauge condition has no effect on the field solution for E and H

and that it is always possible to find potentials which satisfy the gauge

condition. Suppose that A and • are potentials which satisfy Maxwell's

equations through the relations

= -_7_- ju_ (A.3)

_o _ = _ x A (A.4)

It zs assumed that no restriction (such as a gauge condition) has been applied

to A and _. It is known that Maxwell's equations are invariant under a gauge



transformation of the type

A (A.5)

(Ao6)

in which A , @ are the new potentials and _ is the gauge function° If it

is required that the new potentials satisfy the modified Coulomb gauge

condition, Equation (A.I) becomes

(A.7)

Equation (A.7) has the same form as the quasl-statlc equation for the scalar

potentlal and solutlons for this equation may be obtained easily. Thus a

gauge function _ can always be found such that the gauge condition is

satisfied° Furthermore the invarlance of Maxwell_s equations under a gauge

transformation assures that the field solutions are unaffected by the choice cJ:_

of gauge condition°


